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the world-volume gauge field. We observe that the κ-symmetry condition for a D7-brane

in an imaginary self-dual (ISD) background can be generalized yielding minimization of

the action with respect to variations of the gauge field only but not of the embedding.

This provides a new way to construct non-BPS solutions for D7-branes once the embed-

ding extremizes the geometrical volume of the brane. We then apply this method to the

Klebanov-Strassler background and find a new D7 − D̄7 brane configuration that real-

izes the spontaneous breaking of flavor chiral symmetry as evidenced by the Goldstone

boson identified in the spectrum. This result generalizes our previous construction for

the Klebanov-Witten model. We compare our setup with the Sakai-Sugimoto model and

discuss possible applications to QCD-like physics.
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1 Introduction

The steady progress of the gauge/string duality [1] in describing four-dimensional phenom-

ena gives rise to a hope to find a stringy (gravity) model for the QCD and hadron physics.

Yet among other unresolved problems finding a suitable model to capture the spontaneous

breaking of flavor chiral symmetry (χSB) proven to be a complicated task. The funda-

mental matter appears as a result of incorporating the flavor branes [2] into the gravity

background. To find such a solution is a formidable task. The problem greatly simplifies

in the so-called quenched approximation Nc ≫ Nf when one can neglect the back-reaction

of flavor branes and consider them in probe approximation. Even in this case to find a

solution could be complicated, especially if a non-trivial background NS-NS flux is present.

The study of the flavor chiral symmetry breaking took a new turn after Sakai and

Sugimoto proposed a model [3] providing a successful holographic description of the phe-

nomenon. The Sakai-Sugimoto model is based on incorporating D8-branes into the back-

ground of non-extremal D4-branes. The former is also known as Witten’s model [4]. The

D8-branes have the U-like shape which can be interpreted as the stacks of D8 and anti

D8-branes merging in the IR region. Since the branes and the anti-branes are separated

in the UV, the flavor symmetry is U(Nf)L × U(Nf)R. In the IR region though the flavor

symmetry is broken to the diagonal U(Nf)D by a quark VEV. Besides the chiral symme-

try breaking the Sakai-Sugimoto setup provides a holographic realization of light mesons

and baryons.
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Despite the success in describing chiral symmetry breaking the Sakai-Sugimoto model

suffers from the drawbacks inherited from the Witten’s model. In particular it is inconsis-

tent in the UV region because the string coupling diverges there. Besides that the geometry

includes a compact circle. Therefore the four dimensional description breaks down for the

energies exceeding the compactification scale. A potential way to bypass these problems

is to study the flavor branes in the confining backgrounds with constant dilaton like the

one found by Klebanov and Stassler [5]. Motivated by the work of Sakai and Sugimoto

we expect that to model the chiral symmetry breaking the flavor branes have to be U-like

shaped with each end preserving a distinct set of supercharges while the whole solution is

not supersymmetric. One way to achieve this in the KS case is to wrap the D7-brane over

the three-cycle S3 at the base of the conifiold T 1,1 ∼= S2 × S3 [6, 7] while D7-brane is also

stretching in the rest of the confiold R+ × S2 forming a U-like shape.

An important step in this direction was recently undertaken in [8] where the pro-

posed D7-D̄7 setup was investigated in the case of the conformal Klebanov-Witten (KW)

background [6]. It was found there that the asymptotic location of two branches are not

antipodal on the 2-sphere but have a fixed angle difference of
√

6/4π. Because the KW

background is conformal the angle separation is independent of the only free parameter of

the solution r0, which marks the lowest point of the D7-brane’s profile. In the dual field

theory r0 corresponds to a chiral symmetry breaking VEV. The corresponding Goldstone

boson of the broken flavor chiral symmetry was also identified in the spectrum [8].

In an earlier attempt [9] a similar configuration of D7 − D̄7 flavor branes was investi-

gated in the confining background of the KS solution. Despite some interesting insights into

the geometry of the D7-brane profile the solution was not completed because of complica-

tions due to the nontrivial background NS-NS flux of the Klebanov-Stassler (KS) solution.

The main goal of this paper is to generalize the results of [8] to the Klebanov-Strassler

background thus completing and generalizing the construction of [9]. As we have already

mentioned above the main obstacle in this case is the non-trivial background B-field which

couples to the word-volume fields and excludes the configurations with vanishing gauge

field. Similarly to [8] the configuration is question should break supersymmetry. This and

the non-linear nature of the probe’s equation of motion significantly complicate the process

of finding the solution.

In the quest for a probe brane solutions in the KS model (or any other background) a

remarkable simplification can be achieved if one focuses only on the supersymmetric config-

urations. In this case a non-linear second order equations of motion can be substituted by

the first order κ-symmetry constraint [10] which ensures that the D7’s action is minimized.

Thus in the case of the ISD background with constant dilaton the κ-symmetry requires the

D7-brane to be embedded along a holomorphic cycle and the gauge invaraint world-volume

gauge field F ≡ ϕ⋆(B) + 2πα′F to be of the (1, 1) type and anti-self dual (ASD):

F = − ⋆4 F . (1.1)

Although to satisfy these requirements may turn to be a complicated task [11] in general

the supersymmetric solutions are easier to find. Unfortunately the known supersymmetric

solutions [12–14] have a geometry of the single branch which looks topologically trivial in

– 2 –
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the UV and hence don’t describe flavor chiral symmetry breaking in the dual gauge theory.

Rather the flavor symmetry consists of a single U(Nf). The holomorphic embddings has

been also extensively studied beyond the quenched approximation taking into account the

backreaction of the branes [15].

Our primary observation, however, is that the ASD condition (1.1) minimizes the

D7-brane action with respect to the world-volume gauge field even though the other two

criteria may not be met. Therefore it can be used to construct a non-supersymmetric

non-BPS solutions provided one can solve the equation for the embedding. In fact the

task is even simpler since the ASD gauge field decouples from the equations governing

the embedding leading to an intuitive problem of extremizing geometrical volume of the

D7-brane. In this paper we use this method to find a solution with the SU(2) symmetry

which unambiguously fixes the embedding upon the boundary conditions in the UV are

specified. The profile we found is not holomorphic, yet it minimizes the volume within its

class of symmetries. We also complete the solution by constructing the ASD gauge field

that satisfies the Bianchi identity.

The geometry of the solution is a reminiscent of the one found in the KW case [8]. It

is a U-shaped configuration which wraps S3 at the base of the conifold and is stretched

along the equator on S2. The only free parameter of the solution τ0 measures the distance

between the lowest point of the profile and the tip of the conifold. For τ0 much larger than

the deformation parameter of the conifold the geometry approaches the conformal one and

the angle separation between the D7-brane and the anti-brane approaches the KW value√
6/4π. For the configuration stretching all way to the tip τ0 = 0 the locations of brane

and the anti-brane on S2 are exactly antipodal.

The paper is organized as follows. In the next section we briefly review the κ-symmetry

condition for the D7-brane and show that the ASD condition along minimizes the action

with respect to the perturbations of the world-volume gauge field. We then proceed with

formulating a method to find non-supersymmetric solutions via extremizing the geometrical

volume of the embedding. In section 3 we construct such an embedding for the D7-brane

in the KS background and accompany it by an appropriate ASD world-volume flux in

section 4. In this way we construct the model with the sponteniously broken flavor chiral

symmetry. We elaborate on the four dimensional physics of the model in section 5 and

briefly discuss other possible applications of our findings in section 6. Various technical

details are delegated to the appendices.

2 General idea

Motivated by the Introduction we are interested in finding a solution for a D7-brane em-

bedded in a type IIB background with a Poincare symmetry and a constant dilaton eφ = gs.

As discussed in [16] such a background has imaginary-self-dual 3-form flux G3 = F3 + i
gs

H3

and is usually referred as an ISD background. The ten dimensional geometry of an ISD

background is a warped product

ds2
(10) = h−1/2

(
dx2

0 + . . . + dx2
3

)
+ h1/2ds2

M6
, (2.1)

– 3 –
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of the flat Minkowski space and a 6d dimensional CY space M6 with the metric ds2
M6

. The

warp factor h depends only on the coordinates along M6 (radius τ in the conifold case)

and determines the self-dual RR 5-form

F̃5 = (1 + ⋆10) dC4 where C4 = h−1 · dx0 ∧ . . . ∧ dx3. (2.2)

The complex 3-form G3 is zero in the Minkowski space and is imaginary self dual G3 =

⋆6iG3 with respect to the 6d metric on M6. Providing that the 3-form is of the (2, 1) type

the background has four supercharges [16] (see [17] for the non-constant dilaton case) and

can be dual to a certain 4d N = 1 gauge theory.

In addition the self-duality of G3 and the explicit form of C4 in (2.2) imply that F7

defined as

F7 = ⋆10F3 + C4 ∧ H3 with ⋆10 F3 = h−1 ⋆6 F3 ∧ dx0 ∧ . . . ∧ dx3 (2.3)

identically vanishes [13].

A particularly well known example of such a background is the Klebanov-Strassler

solution [5]. Although the remnant of this section is applicable to any ISD background

one can have KS background in mind in what follows. We particularly focus on the KS

background starting section 3 where we construct a non-SUSY D7-brane illustrating the

main idea of this section.

Now let us focus on a D7-brane that spans the Minkowski space together with a 4-cycle

Σ4 inside M6. In order to find a classical D7-brane configuration we have to solve the equa-

tions of motion for both the scalars that parametrize the embedding and the gauge field

living on the brane. The Poincare symmetry reduces the ten dimensional problem to six

dimensions but the problem is still to complicated to be addressed in its generality. To find

an appropriate embedding in M6 is especially difficult if the background has a non-trivial

NS-NS field dB = H3. The situation, however, greatly simplifies if one considers a super-

symmetric solution. The κ-symmetry analysis for the D7-brane reduces the problem to an

Euclidean D3-brane extending along the 4-cycle Σ4. The latter was analyzed in [10] where

it was shown that in order to preserve the background supersymmetries the embedding

and the world-volume gauge field have to satisfy the following conditions:

1. The cycle Σ4 is holomorphic.

2. The gauge-invariant 2-form field strength

F ≡ ϕ⋆(B) + 2πl2sF (2.4)

is of type (1, 1).

3. Field F is primitive, i.e. it is orthogonal to the pull-back of the Kähler form J

ϕ∗(J) ∧ F = 0 . (2.5)

– 4 –
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The last two requirements imply F being anti-self dual

F = − ⋆4 F , (2.6)

where the positive orientation on the 4-cycle Σ4 is given by the volume form

wC =
1

2
ϕ⋆(J ∧ J). (2.7)

What happens, however, if we are after a non-supersymmetric D7-brane? Unlike the

κ-symmetry condition above the anti-self duality condition (2.6) does not use the complex

structure inherited from M6 and it is natural to ask whether it can be relevant for a

non-supersymmetric case. The answer can be formulated in the form of the following

observation.

The classical equations of motion for the gauge fields on the D7-brane world-volume

are solved by any anti-self dual field F (2.6). Furthermore, the anti-self dual gauge field

F does not contribute to the equations of motion of the scalars that fix the embedding. In

other words, the effective action for the scalars is the pure DBI action with zero gauge

field i.e. the volume of the cycle Σ4. Hence any embedding which extremizes the volume,

together with any anti-self-dual gauge field on it solves the equations of motion for the probe

D7-brane.

This is equally applicable to an anti-D7-brane if the anti-self-duality condition is sub-

stituted by self-duality.

Before we proceed with the proof let us notice that the observation above provides a

novel way to construct classical solutions for D7-brane. At first one can find an embedding

Σ4 which extremizes the volume and later find gauge field configuration which is anti-self-

dual and satisfies the Bianchi identity.

The observation directly follows from the fact that for the given induced metric the

D7-brane action is bounded from below and reaches its minimum if F is anti-self-dual.

The rest of this section will prove the observation. The D7-brane action consists of

the two parts

SD7 = SDBI + SWZ, (2.8)

where

SDBI = µ7

∫
dσ8e−φ

√
− |ϕ⋆(g10) + F| and SWZ = µ7

∫ ∑

p

Cp ∧ eF . (2.9)

Here µ7 = (2π)7l8s , and ϕ⋆(g10) is the pullback of the ten dimensional metric (2.1).

Let us now show that for the case at hand only the C4 dependent Wess-Zumino term

contributes to the action. First, we have shown above that F7 = 0. Next, the C2 term

vanishes as we assume F has no no space-time legs due to Poincare symmetry. Finally, the

term containing the Hodge dual of C4 is excluded for the same reason as C2.

Now we can plug the explicit form of C4 (2.2) into the WZ action. Furthermore,

since we are looking for a static classical solution, we can integrate over the space-time

coordinates. The resulting action will depend only on the 4-cycle Σ4 in M6

SD7 = µ7g
−1
s VolR1,3 ·

∫

Σ4

dσ4

(√
|g + h−1/2F| + Pf

(
h−1/2F

))
. (2.10)

– 5 –
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Here g is the induced metric on the 4-cycle without the warp factor i.e. ϕ⋆(g10) =

h−1/2dxµdxµ + h1/2g.

To find a classical solution we would have to consider the variation of this action

with respect to the world-volume gauge fields Aµ and the scalars φi that determine the

embedding. The former appear only in F but the latter in both g and F . Remarkably, the

analysis significantly simplifies if instead of writing down the explicit equations of motion

we try to find the global minimum with respect to gauge field F for the given metric g.

Such a minimum indeed exists due to an inequality

√
|1 + M| + PfM > 1, (2.11)

where M is some antisymmetric matrix. It is saturated when M is anti-self-dual. An easy

way to analyze (2.10) is to choose the coordinates such that in a given point g is an identity

matrix and therefore it is invariant under so(4) ∼= su(2) × su(2) symmetry. At this point

M = h−1/2F is antisymmetric and the action (2.10) can be written in the form (2.11).

The antisymmetric M and can be represented as a sum of self-dual and anti-self-dual parts

M = Ms + Ma, each in a vector (adjoint) representation of one of the two su(2)’s. We

denote the length of these two vectors as rs and rs. These lengths are the only invariants

of M and hence the left-hand-side of (2.11) is a function of rs and ra. We further use

SU(2) × SU(2) to align the “vectors” Ms and Ma along the third axis

M =




0 (rs + ra) 0 0

−(rs + ra) 0 0 0

0 0 0 (rs − ra)

0 0 −(rs − ra) 0


 . (2.12)

A straightforward calculation leads to inequality (2.11) written in the form

√
(1 + (r2

a − r2
s))

2 + 4r2
s − (r2

a − r2
s) > 1 . (2.13)

Clearly this inequality is saturated for r2
s = 0 and arbitrary r2

a which means that Ms = 0

and so M is anti-self-dual.

Now we see that the anti-self-dual field minimizes the action for any given g and the

minimal value of the action is simply the geometrical volume. Therefore any embedding

which extremizes the volume

Seff
D7 = µ7g

−1
s VolR1,3 ·

∫

Σ4

dσ4
√

|g| , (2.14)

will solve the full set of the equations of motion if accompanied by any anti-self-dual field

F . If such a gauge field also satisfies the Bianchi identity

dF = ϕ∗(H3), (2.15)

the resulting configuration is a classical solution for the probe D7-brane.

Let us note here that the effective action (2.14) is calibrated by the integral of wC (2.7)

over Σ4 and the calibration condition is satisfied when the embedding is holomorphic [18].

– 6 –
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In this case ASD solution will satisfy the κ-symmetry condition and be supersymmetric. At

the same time not all ASD solutions are supersymmetric. If embedding merely extremizes

(but does not minimize) the volume, or has to satisfy certain boundary conditions incom-

patible with holomorphicity the resulting ADS solution is not supersymmetric. Similarly

to [19] we will call such a solution non-BPS. It satisfies the first order constraint (2.6) and

minimizes the action with respect to the perturbations of the world-volume gauge fields.

Moreover one can often easily investigate stability of the ASD solution. If an embedding

(i.e. the resulting induced metric g) minimizes the volume (2.14) within a certain class of

geometries (for example invariant under certain symmetry group), then an anti-self-dual

solution “built” on top of this embedding is stable within this class of geometries as the

action reaches its minimal value within the class. If there is more than one anti-self-dual

gauge-field which satisfies Bianchi identity for the given metric g the solution might have

zero modes associated with the unfixed D3-brane charge.

3 D7-branes in the KS case

To illustrate how the observation from section 2 can help one find new solutions we turn to

the example of the KS background and construct an explicit example of a non-SUSY probe

D7-brane. As was mentioned above the initial step in finding new solutions is to find an

embedding Σ4 which extremizes the volume. Certainly any holomorphic Σ4 would do the

job, but the resulting ASD solution would necessarily be supersymmetric. Alternatively

one can focus on Σ4 invariant under a sufficiently large group of symmetries which fixes

the shape of Σ4. Thus in the KS case one can focus on Σ4 preserving a part of the global

SO(4) symmetry of the conifold. Clearly any D7-brane necessarily breaks SO(4). The

biggest unbroken subgroup a D7-brane can preserve is SU(2). There are two distinct ways

how one can embed the unbroken SU(2) into SO(4) ∼= (SU(2)L × SU(2)R) /Z2. The first

one leaves the diagonal SU(2)D unbroken. The second one preserves only the SU(2)R (or

equivalently the SU(2)L) subgroup.

The SU(2)D invariant embedding leaves the homogeneous coordinate of the conifold

z4 invariant and acts on (z1, z2, z3) as a vector. The lowest state in this sector is a super-

symmetric embedding z4 = const discussed in [13]. As was mentioned in the Introduction

this solution does not spontaneously break flavor chiral symmetry.

To find the solution preserving one of the two SU(2)’s we use the coordinates introduced

in [20] which make it explicit. Following Papadopoulos and Tseytlin we represent the base

of the conifold as the product S2 × S3 with one of the SU(2) symmetries acting on the S3

and leaving the S2 invariant while the other SU(2) does not preserve the S2 ×S3 splinting

and mixes the two. Let

e1 = dθ1 , e2 = sin θ1dφ1 (3.1)

be a basis of one-forms on S2 and ǫi with i = 1, 2, 3 be a basis of the Maurer-Cartan SU(2)R
invariant forms on S3

dǫi = −1

2
ǫijkǫj ∧ ǫk . (3.2)

– 7 –
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Then the deformed conifold metric written in this notations is [20, 21]

ds2
M6

=
1

4
ǫ4/3K(τ) cosh τ

[
e2
1 + e2

2 + ǫ2
1 + ǫ2

2 +

+
2

cosh τ
(e1ǫ1 + e2ǫ2) +

2

3K(τ)3 cosh τ

(
dτ2 + ǫ2

3

) ]
,

with K(τ) =
(sinh τ cosh τ − τ)1/3

sinh τ
, (3.3)

while the 10-dimensional metric appears in (2.1). Besides the metric we will also need the

NS-NS form

B = h1(τ)

[
ǫ1 ∧ ǫ2 + e1 ∧ e2 +

1

cosh τ
(e1 ∧ ǫ2 + ǫ1 ∧ e2)

]
,

with h1(τ) = −1

2

(
gsMl2s

)
· cosh τ(τ cosh τ − sinh τ)

2 sinh2 τ
. (3.4)

The embedding of the D7-brane Σ4 is stretching along the radius τ and three other direction

on the base of the conifold. To be SU(2)R invariant Σ4 must completely cover the three-

sphere (which is maped into itself under the action of SU(2)R) and be located at the distinct

point(s) at S2.

It is clear from (3.3) that the deformed conifold is not a direct product R+ × S2 ×S3.

In principle it is possible to find a trivialization, i.e. an appropriate coordinate basis on

S3 independent of the position on S2 [22]. This approach was adopted in [8] where a

non-SUSY SU(2)R invariant D7-brane was found in the background of the singular KW

solution. Here we generalize this configuration to the deformed conifold case but there is

no apparent need to use the trivialization basis. In fact we are looking for the embedding

covering S3 completely and therefore the details of the coordinate basis on S3 are not

important. This would not be the case if we were after the non-SU(2)R invariant physics,

such as the spectrum of meson perturbations for the model in question. As we will see

below the induced metric on Σ4 written in the ordinary coordinates splits into a direct

product R+ × S3 with the metric on S3 being explicitly SU(2)R invariant.

As was outlined above we consider an embedding which covers S3 and can be repre-

sented as a distinct point on S2. The location of the latter may depend on the radius τ .

Hence the embedding can be visualized as trajectory (φ1(τ), θ1(τ)) on S2. The boundary

condition at any given τ defines a plane which splits S2 into two equal semi-spheres and

preserves the reflection-symmetry through this plane. This implies that the trajectory

(φ1(τ), θ1(τ)) is a part of a big circle and with help of the broken SU(2)L can be aliened

along the equator (φ1 = φ(θ), θ1 = π/2).1 One can easily see that the resulting unwarped

1It can be easily verified that choosing the longitude (φ1 = const, θ1(τ )) would lead to exactly the same

induced metric.

– 8 –
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induced metric on Σ4 is explicitly SU(2)R invariant (the dot stands for the d/dτ derivative)

ds2
Σ4

=
ǫ4/3

4
K(τ) cosh τ

[
ǫ2
1 + ǫ̃2

2 +

+

(
tanh2 τ φ̇2+

2

3K(τ)3 cosh τ

)
dτ2+

2

3K(τ)3 cosh τ
ǫ2
3

]
,

where ǫ̃2 ≡ ǫ2 +
φ̇

cosh τ
dτ . (3.5)

After integrating the directions along S3 the effective action (2.14) becomes

SD7 = µ7
2π2

24
ǫ8/3

∫
dτ

cosh(τ)

K(τ)

(
1 +

3K(τ)3 sinh2(τ)

2 cosh(τ)
· φ̇2

)1/2

, (3.6)

which leads to

φ̇2 =
2cosh τ

3K(τ)3 sinh2 τ

(
K(τ) sinh2 τ cosh τ

K(τ0) sinh2 τ0 cosh τ0

− 1

)−1

. (3.7)

This configuration does not necessarily stretches to the bottom of the conifold τ = 0 but

rather to the minimal radius τ = τ0. There the value of φ̇ jumps from minus to plus infinity

which means that the D7-brane turns back into the direction of larger radius. Hence the

geometry is U -shaped, accompanied by a never-shrinking S3 at each radius.

To calculate the total angle “traveled” by the trajectory on S2 we integrate φ̇ from the

lowest radius τ0 to infinity

1

2
∆φ =

(
2

3

)1/2 ∫ ∞

τ0

dτ

(
cosh τ

K(τ)3 sinh2(τ)

)1/2( K(τ) sinh2(τ) cosh τ

K(τ0) sinh2(τ0) cosh τ0
− 1

)−1/2

. (3.8)

For a very large τ we have K(τ) ≈ 21/3e−τ/3 and one can check that for τ0 large enough
1
2∆φ =

√
6

8 π which coincides with the KW case [8] . On the other hand for the small values

of τ we have K(τ) → (2/3)1/3 and so in the limit τ0 → 0 the integral reduces to

1

2
∆φ = lim

τ0→0

∫ ∞

τ0

dτ

τ

((
τ
τ0

)2
− 1

)1/2
=

π

2
. (3.9)

This means that for τ0 = 0 we have an antipodal configuration. figure 1 demonstrates the

dependence of the angle ∆φ on the parameter τ0.

4 Anti-self-duality condition

Our nest task is to complete the embedding (3.7) by an anti self dual gauge field which

satisfies Bianchi identity. Such a gauge field will minimize the action. Therefore it is

reasonable to assume that it preserves the unbroken SU(2)R symmetry. Hence we proceed

with an explicitly SU(2)R invariant ansatz for the gauge field on Σ4 in the Aτ = 0 gauge

A(τ) = Ai(τ)ǫi . (4.1)
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Figure 1. The blue plot shows the dependence of the angle ∆φ in (3.8) on the lowest point of the

profile τ0. For τ0 = 0 the brane and the anti-brane are antipodal (∆φ = π), whereas for τ0 → ∞
we recover the KW result ∆φ →

√
6/4π (red line).

Given that the pull-back of the NS-NS form is

ϕ∗(B) = h1(τ)ǫ1 ∧ ǫ̃2 , (4.2)

and using (3.2) one can easily calculate the gauge-invariant combination (from here on we

put gsMl22 = 2)

F =

(
Ȧ3(τ) +

A1(τ)

cosh τ
φ̇(τ)

)
dτ ∧ ǫ3 +

(
Ȧ1(τ) − A3(τ)

cosh τ
φ̇(τ)

)
dτ ∧ ǫ1 +

+Ȧ2(τ)dτ ∧ ǫ2 − (A3(τ) − h1(τ))ǫ1 ∧ ǫ̃2 − A1(τ)ǫ̃2 ∧ ǫ3 + A2(τ)ǫ1 ∧ ǫ3. (4.3)

Because of the U-like shape of the D7-brane’s profile we can not use τ as a world-volume

coordinate globally. Nevertheless we can start at one branch in the large τ region and write

down down the anti-self-duality condition (2.6) using the induced metric (3.5)

(
Ȧ1(τ) − φ̇(τ)

cosh τ
A3(τ)

)
= L(τ)A1(τ),

Ȧ2(τ) = L(τ)A2(τ),(
Ȧ3(τ) +

φ̇(τ)

cosh τ
A1(τ)

)
=

2L(τ)

3K(τ)3 cosh τ
(A3(τ) − h1(τ)), (4.4)

where

L(τ) =

(
1 +

3K(τ)3 sinh2 τ

2 cosh τ
φ̇(τ)2

)1/2

=

(
1 − K(τ0) sinh2 τ0 cosh τ0

K(τ) sinh2 τ cosh τ

)−1/2

. (4.5)
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These equations are valid everywhere on that branch from τ = ∞ to τ = τ0. When τ

reaches τ0 and we move to another branch the orientation flips (because dτ changes sign)

and so L → −L in the equations above. To better understand this flip of sign we can

switch from τ to the well-defined coordinate φ (3.7). Assuming now the gauge field (4.1)

is φ-dependent A = A(φ)iǫi we can write down the ASD equation valid everywhere on the

profile. Let us put A1 = A3 = 0 and focus on A2 for simplicity. The ASD equation in this

case takes the form

dA2(φ)

dφ
= L̃(φ)A2(φ) (4.6)

with L̃ =
L

|φ̇|
=

(
3K(τ)3 sinh2 τ

2 cosh τ
· K(τ) sinh2 τ cosh τ

K(τ0) sinh2 τ0 cosh τ0

)1/2

for τ = τ(φ).

Since L(φ) and L̃(φ) are positively defined and the equation (4.6) is valid everywhere on

D7-brane we have to conclude that the right-hand-side of the equations (4.4) changes sign

when τ moves from one branch into another. The branch with the plus sign as in (4.4)

describes the D7-brane while the other branch with minus sign in front of L is the anti-

D7-brane.

Let us now analyze the ASD equations. We start with the D7-brane branch i.e. the

equations (4.4). At large τ we have L(τ) → 1. The function A2(τ) is decoupled from the

other two functions and therefore it grows like eτ if not zero. This means that we have to

put A2(τ) = 0 to satisfy the boundary conditions at infinity.

We were not able to find an analytical solution for A1 and A3 for general τ0. But for

τ0 = 0 the derivative φ̇(τ) vanishes everywhere except the origin and the solution can be

easily constructed. First we notice that in this case A1(τ) satisfies the same equation as

A2(τ) in (4.4). Therefore the only non-divergent solution is A1(τ) = 0. A general solution

for the remaining equation for A3(τ) is

A3(τ) = eS(τ)

(∫ ∞

τ
dτ ′ 2h1(|τ ′|)

3K(τ ′)3 cosh τ ′ e
−S(τ ′) + c0

)

with S(τ) =

∫ τ

0
dτ ′ 2

3K(τ ′)3 cosh τ ′ (4.7)

and c0 is an integration constant. It is easy to see that S(τ) ≈ 2
3τ for large τ and so A3(τ)

exponentially diverges if c0 is not zero. On the other hand, for c0 = 0 we find for large τ

A3(τ) → −τ

2
− 1

4
. (4.8)

One can also check that A3(τ) is regular at τ = 0 for any value of c0.

We analyze the equations for A1 and A3 for τ0 > 0 in appendix B and show that there

is a unique solution regular at the UV and that it is regular at τ = τ0.

To find the solution on the anti D7-brane branch we notice that the homogeneous

solution to (4.4) with −L instead of L is a decaying exponent at infinity. Therefore any

solution is regular at UV. The solution is nevertheless uniquely fixed by the boundary

condition at τ = τ0 to ensure that the solutions on both branches are smoothly glued at

– 11 –



J
H
E
P
0
8
(
2
0
0
9
)
0
0
5

-6 -4 -2 2 4
Τ

-2.0

-1.5

-1.0

-0.5

A3

Figure 2. The blue plot is the numerical solution for A3(τ) for τ0 = 0. The solution rapidly

approaches its asymptotic behavior (4.8) and (4.9) (red line).

the junction. To prove that such a solution exists it is enough to switch to the coordinate

φ like in (4.6) since the point τ = τ0 is not special in this case.

To illustrate the point that the solution on both branches can be smoothly glued at

τ0 = 0 we return to the function A3(τ) in the special case τ0 = 0. In this case we can

introduce negative τ to describe the anti D7 branch while the positive τ describes the D7

branch.2 This choice is convenient because (4.7) continued to the negative values of τ is a

solution on the D̄7 branch.3 The solution is obviously smooth at τ = τ0 = 0 and rapidly

approaches its asymptotic at plus (4.8) and minus infinity

A3(τ) → −|τ |
2

+
5

4
, (4.9)

as shown on figure 2.

To summarize, the unique choice of the non-divergent boundary conditions for the

gauge fields Ai(τ) in the UV on the D7 branch unambiguously fixes the solution which

is regular and smooth everywhere, including IR region τ = τ0 and the UV region on the

D̄7 branch.

5 The dual gauge field theory

In [8] a solution for Nf probe D7 and anti D7 branes merging in the IR was found in the

context of the conformal KW background. In the previous two sections we generalized

2 For τ0 = 0 we can define a new set of coordinates y = τ cos(φ) and z = τ sin(φ) which are similar to

the coordinates introduced in [8] for the singular conifold. Now the τ0 = 0 embedding is simply given by

y = 0 and z is the coordinate that spans the brane worldvolume. Moreover, z ranges from −∞ to ∞ and

the reflection z → −z exchanges the two branches of the brane profile like in [8]. The radial coordinate is

given by τ = |z|, where the negative values of τ now correspond to negative z. We therefore can rewrite

the equation for A3 in (4.4) entirely in terms of z while providing legitimacy to (4.7) for τ < 0.
3Notice the modulus in the argument of h1 in (4.7)
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this result to the KS case. In this section we will address the phenomenological differences

between the two models in question.

1. Broken conformal symmetry

Because of the conformal symmetry of the KW background the asymptotic angle

separation between the branes was “frozen” to ∆φ =
√

6
4 π and did not depend on

the position of the lowest point along the profile r0. Therefore the Goldstone boson
∂

∂r0
associated with the spontaneous symmetry breaking of scale invariance did not

change boundary conditions i.e. was normalizable. As a result the massless Goldstone

boson was present in the physical spectrum of the problem. This obviously is not

the case in the KS model. The KS is a confining background and is obviously not

scale invariant. As a result the angle separation ∆φ varies between
√

6
4 π and π as one

takes τ0 from infinity to zero. Therefore the massless mode ∂
∂τ0

changes the boundary

conditions, namely not normalizable, and hence not in the spectrum.

2. Broken chiral symmetry

As for chiral symmetry we expect that the scenarios in the KW and the KS are quite

similar. In particular the underlying gauge theories both admit chiral symmetry

which is spontaneously broken by a VEV. It was argued in [8] that the D7 branes

described there give rise to the left and right Weyl spinors rather than the Dirac

spinors. The argument was based on the observation that, if taken separately, each

branch of the brane’s profile is similar to one “half” of the holomorphic embedding

of [12]. The latter setup includes Weyl spinors as can be shown using the “original”

N = 2 gauge theory [6]. Since in our case the branches are separated in the UV the

Weyl spinors can not interact and hence massless. In the IR the chiral symmetry must

be broken to the diagonal flavor symmetry due to a quark anti-quark condensate. The

spontaneous breaking of the chiral symmetry gives rise to a Goldstone boson which

can be identified as a massless mode (pion) in the mesonic spectrum on the gravity

side. From the gauge theory perspective, one can argue that the chiral symmetry

must be spontaneously broken based on the ’t Hooft anomaly matching condition.

This is similar to the situation in ordinary QCD and for Nf < Nc for N = 1 SQCD.

Let us show that the massless Goldstone mode is present in the spectrum also for

the KS background. It was argued in [8] that the 5d Maxwell action takes the form

(here the integral is symbolic and covers both branches)

S = −T ′
∫

dx4dτ (C(τ)FµνFµν + 2D(τ)Fµτ Fµ
τ ) (5.1)

and a zero mode in the vector spectrum appears if and only if the integral

∫ ∞

τ0

dτ

D(τ)
(5.2)

is finite. We find the explicit form of the functions C(τ) and D(τ) in appendix C.

It appears that D(τ) does not depend on the gauge fields on the S3 and therefore is

– 13 –
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the same on both branches

D(τ) = |g|1/2gττ =

√
3

4
ǫ4/3 K(τ) cosh(τ)

L(τ)
. (5.3)

This expression is finite for τ → τ0 since D(τ0) behaves like (τ − τ0)
1/2 near τ0 = 0.

Therefore the integral (5.2) is obviously convergent.

3. Broken supersymmetry

It was shown in [8] that the two branches of the D7-brane profile asymptotically can

be described via

w1

w3
= λ1 ,

w1

w3
= λ2 ,

λ1

λ2
= ei∆φ . (5.4)

Here wi are the homogeneous coordinates on the singular conifold

w1w2 − w3w4 = 0 , (5.5)

and the two complex constants λ1, λ2 mark the location of the branches on S2. Al-

though each branch is asymptotically holomorphic together they do not lie on a holo-

morphic curve. Therefore the corresponding solution is not supersymmetric. Since

the geometry of the deformed confiold approaches the singular conifold in the UV the

description (5.4) is still valid in the KS case. Therefore the solution found in the pre-

vious sections is not supersymmetric. From the field theory perspective the broken

supersymmetry implies that while the chiral quarks are massless, the corresponding

flavor scalars (these would be squarks in a supersymmetric case) are massive. It also

implies that the fermionic spectrum on the flavor brane should not admit a massless

Goldstino. We expect this can be proved by a careful analysis of the D3-D7 strings.

Another important question that we would like to address is CP violation. We saw in

the previous section that the ASD world-volume flux does not respect the Z2 symmetry

that exchanges the two branches of the D7-brane (i.e. φ → −φ). We argue that this Z2

breaking implies the C and P-symmetry breaking while CP is unbroken.

Before we turn to the analysis of the KS case let us review the results derived in [8]

for D7-brane in the KW background. In this case the world-volume flux vanishes and the

embedding is symmetric under Z2. It was shown there that both C and P transformations

involve the Z2 flipping φ → −φ. Yet one can assign charges to all fields such that the

effective five and four-dimensional actions are C and P invariant. To illustrate the point

we consider a five-dimensional interaction term
∫

d4x dφ δθ1 F ∧ F , (5.6)

which follows from the WZ term
∫
D7 C̃4e

F . Here δθ1 is the KK mode of θ1 defined in (3.1).

Since C (and P) turn φ into −φ for all fields in (5.6) the expression is invariant no matter

how the wave-functions F and δθ1 look like. The transformation φ → −φ is simply a
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change of integration variable from the five-dimensional point of view. Furthermore since

the embedding is Z2 invariant each individual world-volume wave-function has definite Z2

charge and therefore one can assign each fluctuation with a definite C (and P) charge.

This is not so if there is a non Z2-invariant world-volume flux present, like in the case

when D7 is embedded into KS background. It is still true that the interaction term (5.6)

is invariant under C and P symmetry. But because the individual fluctuations satisfy a

non-Z2 symmetric equation they don’t carry a definite charge under Z2 and hence under

C or P. Therefore both C and P symmetry is broken in four dimensions. Despite that

the CP symmetry is not violated as the combination of C and P does not act on the fifth

coordinate φ.

We leave it as an open problem to find an explicit equation for δθ1 (and other fields)

and estimate the amount of C and P violation. In any case our scenario significantly differs

from the Peccei-Quinn model where CP is broken spontaneously by a non-zero VEV.

Let us finish this section with a comment on possible applications of our result to the

physics of baryons inspired by the Sakai-Sugimoto model. It was shown in [3] that the

D8-brane warping the S4-cycle gives rise to a five-dimensional gauge theory. The later

has solutions with a non-zero baryon charge that correspond to the dissolved D4-branes

warping S4. On a more technical level the corresponding solutions are the five-dimensional

instantones which do not shrink to the zero size due to a non-zero Chern-Simons term.

Naturally our model has a potential for a similar construction. Indeed, in our case the

D7-brane is wrapping the S3-cycle and leads to a five-dimensional gauge theory if these

directions are integrated out. We expect that a dissolved D3-brane that is wrapping S3

will similarly give rise to a baryon configuration. We leave the detailed form of the five-

dimensional action and other aspects of the baryon solution for future investigation.

6 Discussion

In this paper we proposed a new method to construct a non-BPS solutions for the probe

D7-brane in the context of the type IIB backgrounds with a constant dilaton. Our method

is based on the anti-self-duality condition for the world-volume gauge field which gener-

alizes the κ-symmetry condition for the SUSY D-brane. We apply this method to the

Klebanov-Strassler background and found a non-SUSY solution with a SU(2) symmetry.

The resulting profile is a product of the Minkowsi space and a U-like shape accompanied

at each point by a never-shrinking S3. It can be thought of as a junction of a D7 and

an anti D7-brane. Because of the merging region in the IR the asymptotic flavor sym-

metry SU(N)L × SU(N)R is spontaneously broken down to SU(N)D by a non-zero VEV.

We identified the corresponding massless Goldstone boson in the physical spectrum. We

expect our model to provide a holographic realization of the QCD-like physics (mesons and

baryons) in a similar way to the Sakai-Sugimoto model. At the same time our model does

not suffer from the divergent dilaton in the UV .

Besides describing flavor physics in the QCD-like theories the D7-brane plays a crucial

role of stabilizing Kähler moduli in the throat compactification models proposed in [25].

The stringy models of inflation based on this setup include a mobile D3-brane [26] with its
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dynamics governed by the D3-D7 interaction [27]. It was recently shown that such a model

is capable of describing cosmological inflation matching current experimental date [28].

Given the multitude of possible locations of the D7-brane within the throat the dynamics of

the model can significantly vary. The solution for the D7-brane found in this paper is rather

peculiar in this sense as it preserves a large symmetry group and this significantly simplifies

the analysis. Because of the SU(2)R invariance the only possible operators perturbing the

effective potential of the inflaton are those with quantum numbers j2 = R = 0 and arbitrary

j1. The analysis in [29] reveals that in this case instead of the generic form

VD3−D7(r) ∼= c1r + c3/2r
3/2 + c2r

2 + O(r4) + . . . , ci ∼ 1 , (6.1)

the D3-D7 potential acquires a specific form

VD3−D7(r) ∼= c′2r
2 + O(r4) + . . . , (6.2)

with a possibility to fine tune the mass parameter c′2 to zero. It would be interesting to

study this model in more detail to investigate if it yields more favorable phenomenologi-

cal predictions.

In conclusion let us note that the method of constructing non-supersymmetric non-BPS

solutions discussed in section 2 can be applied to the interesting problem of holographic

description of the SUSY breaking states in supersymmetric field theories. To construct such

a state one has to find an embedding for the D7-brane which satisfies some “holomorphic”

boundary condition in UV and solves the EOM for the effective action (2.14) but is not

holomorphic. If this solution happens to be metastable it can be used in various applications

including the holographic gauge mediation models like the one discussed in [30].
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A The minimum of the D7-brane action in the case of a general metric

In this appendix we analyze the action (2.10) ans show that it is bounded from below

by (2.14). The inequality is saturated if F is ASD.

Let M be a 4 × 4 matrix defined by4 M = g−1F , where g and F are arbitrary real

symmetric and anti-symmetric 4 × 4 matrices respectively and additionally g is positive

definite. Using this notations we can rewrite the essential part of (2.10) as

√
|g|
[√

|1 + M|−
√

|M|
]

. (A.1)

From the symmetry properties we immediately find that M† = −gMg−1 and so the

matrices M† and (−M) are similar. As such they have the same eigenvalues and

the same (block) diagonal form. Let us denote by D the (block) diagonalized form

of M and by P a non-singular matrix satisfying D = PMP−1. We then find that

D† = −
(
P †−1

gP−1
)

D
(
Pg−1P †). Since D† and (−D) have the same diagonal elements

up to some re-ordering, the matrix g is necessarily congruent to a permutation matrix.

The only permutation matrix, however, congruent to a positive definite matrix is the unit

matrix. We conclude therefore that the eigenvalues of D, and M, are purely imaginary.

Notice, however, that M is by definition real and so if iλ is an eigenvalue then also is −iλ.

To summarize, the four eigenvalues of M are ±iλ1 and ±iλ2 for real λ1,2. As a consistency

check we can verify that M is indeed traceless as it follows from its definition. (Notic-

ing further that (−M) and MT are also similar we can easily show that M is actually

diagonalizable and not block-diagonalizable, but this is not necessary for our discussion).

Using these results we can write:

√
|1 + M| −

√
|M| =

√
(1 + λ2

1)(1 + λ2
2) − |λ1λ2| > 1, (A.2)

where the inequality is saturated if only if λ1 = λ2. In this case all the eigenvalues of M2

are equal and so M2 is proportional to the unity matrix:

M2 = −|M|1/2 · 1. (A.3)

In terms of the original matrices g and F it implies:

ǫabcd (⋆4F)ab Fce = −2Pf(F) · δd
e , (A.4)

where ⋆4 stands for the Hodge duality with respect to the 4-dimensional metric g. Com-

paring this with the identity:

ǫabcdFabFce = 2Pf(F) · δd
e , (A.5)

which holds for any 4 × 4 anti-symmetric matrix F , we immediately5 arrive at the anti

self-duality condition (2.6).

4Here we ignore the warp function h which can be trivially absorbed in g or F .
5 Going from (A.4) to (A.5) we assumed that |F| 6= 0. Otherwise for |F| = 0 we have |M| = 0 an so

from (A.3) one gets M2 = 0. This in turn means that the matrix Fg−1F is zero, which is possible only for

F = 0 and thus the anti-self duality condition still holds.
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B The solution of the ASD condition (4.4) for τ0 > 0

Here we consider the solution of the system of equations (4.4) for τ0 > 0. In this case φ̇ 6= 0

(or, more precisely, φ̇(τ) is not a δ-function) and we cannot put A1(τ) = 0 anymore. On

the other hand we still have to put A2(τ) = 0 to avoid the divergence at infinity. If we

denote the vector (A1(τ), A3(τ))T by A(τ) then the equations (4.4) can be written as:

Ȧ(τ) = Q(τ)A(τ) + R(τ), (B.1)

where the 2 × 2 matrix Q(τ) and the 2-vector R(τ) can be easily read from (4.4). The

solution of this differential equation is:

A(τ) = eS(τ)

(
P

∫ ∞

τ
e−S(τ ′)R(τ ′)dτ ′ + C0

)
. (B.2)

Here S(τ) is defined by S′(τ) = Q(τ) and the integration constant can be absorbed in a

proper redefinition of the constant vector C0. The ordering in the solution appears because

of the matrix nature of the equation. For τ → ∞ we have:

Q(τ) ≈
(

1 0

0 2
3

)
and R(τ) ≈

(
0
τ
3

)
. (B.3)

Thus if C0 6= (0, 0)T we have A1(τ) ≈ eτ or A3(τ) ≈ e
2

3
τ . Therefore we have to put

C0 = (0, 0)T so that at infinity A1(τ) vanishes and A3(τ) ≈ − τ
2 . Now we have to verify

that the solution in question is regular at τ = τ0. We find near τ0

Q(τ) ≈ 1

(τ − τ0)1/2
Q0 and R(τ) ≈

(
0
1

(τ−τ0)1/2

)
R0 . (B.4)

for some non-zero R0 and non-singular Q0. This implies that for small τ − τ0,

S(τ) ≈ (τ − τ0)
1/2S0. Finally both A1(τ) and A3(τ) behave like const + (τ − τ0)

1/2 at

τ = τ0 and thus the solution is regular in both UV and the IR. Clearly this solution can

be continued to the second branch. Since the solution to the homogeneous system behaves

like A1(τ) ≈ e−τ or A3(τ) ≈ e−
2

3
τ at infinity the solution in question is regular everywhere.

C The general form of the 5D Maxwell action

In this appendix we will derive the general form of the 5d effective action of the gauge fields.

To this end we have to expand the D7 brane action (2.9) around the classical profile.

The perturbation we are interested in is δF = 2πl2sF where F has legs only along the

4d space-time and the radial coordinate τ . As usual the contribution of the WZ part is

proportional to F ∧ F and does not contribute to the equations of motion for an abelian

F . After the integration over the 3-sphere the variation of the DBI part yields

δSDBI = −T ′
∫

d4xdτ
√

|E|Tr
(
(E−1F )2

)
(C.1)
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with E ≡ ϕ⋆(g10)+F0, where ϕ⋆(g10) the pullback of the 10d metric g10 (2.1) and F0 is the

ASD 2-from we found in section 3. Here we absorbed various numerical and dimensionful

constants inside T ′ and use the fact that Tr(E−1F ) vanishes. The latter follows from the

fact that δF has legs only along the space-time while F0 has no such legs. The 8×8 matrix E

consists of two 4×4 blocks. The first block corresponds to the 4d space time and the second

is related to the 4-cycle of the deformed conifold warped by the D7 brane. The 8×8 matrix

E can be written schematically as E = (h− 1

2 ηµν , h
1

2 g(1+M0)) where the entries correspond

to the two blocks. As was already explained after equation (2.10) in our notations g is the

un-warped induced metric on the 4-cycle, namely ϕ⋆(g10) = h−1/2dxµdxµ + h1/2g and

M0 = h−1/2g−1F0. In the same notation we have F = (Fµν , Fµτ ).

It was demonstrated in appendix A that the ASD classical solution we are investigating

satisfies (A.3). This in turn implies that

(1 + M0)
−1 =

(1 −M0)(
1 +

√
|M0|

) . (C.2)

Using this result we find

E−1 =

(
h

1

2 ηµν ,
h− 1

2

√
|g|√

|g| + h−1
√

|F0|
(
g−1 − h− 1

2 g−1F0g
−1
))

. (C.3)

and

√
|E| =

√
|g| + h−1

√
|F0|. (C.4)

Finally, noticing that
(
g−1F0g

−1
)ττ

= 0, we arrive at the following 5d Maxwell action

S5d = −T ′
∫

d4xdτ
[(

h
√

|g| +
√

|F0|
)

FµνFµν + 2
√

|g|gττFµτFµ
τ

]
. (C.5)
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